
1

Heterogeneous
Modeling and Design in

Ptolemy II

Johan Eker
UC Berkeley

with material courtesy of Edward Lee and the Ptolemy group

ECE Seminar Series, Carnegie Mellon, November 29, 2001

Ptolemy II
A Software Laboratory

Ptolemy II
– Java based
– Graphical modeling and

simulation environment
– Multiple “models of

computation”
– Hierarchical &

heterogeneous models
– Code generator
– Actor language

2

Outline

• Introduction
• Ptolemy II basics
• A motivating example
• Research Issues
• Summary

Embedded Systems
• Computers not thought of as

computers
• Increasingly complex designs

–networked, fail safe, etc

• Development speed
– time to market

• Bugs, bugs, bugs
–hard to correct a released product
–don’t want to reboot your toaster

3

What is So Different With
Embedded Software?

• Interaction with physical processes
–sensors, actuators, processes

• Critical properties are not all functional
–real-time, fault recovery, power, security,

robustness

• Heterogeneous
–hardware/software, mixed architectures

• Concurrent
–interaction with multiple processes

• Reactive
–operating at the speed of the environment

Component Technology

• Examples: Java beans, VB-components, etc
• Rationale

– Encapsulation
– Reuse
– Divide complexity

• Successful in many areas
• Problems with concurrent components

– Threads are not components
– Priorities are global parameters

• Difficult to design embedded systems
component with state-of-the art technology

4

Multipurpose tools

• Express almost anything,
guarantee almost nothing

• You only need to know one
programming language
– Quick starts, but sometimes

slower endings

• Programmers+language,
a lifelong marriage

• Examples:
– Java
– C/C++ with RTOS, ADA, Modula-2
– RMA & EDF scheduling

Sharpen your tools

• Use problem
specific tools
–Constrain the

solutions
• Choice of tools,

a major design
decision

• Combine several
tools

5

Hierarchical,
Heterogeneous Modeling

and Design

sensors

leader

Br Acc

Ba

bang-bang PID

follower

controller actuators

S

Ptolemy Background

Claudius Ptolemy Edward A. Lee

• Initially a signal processing tool
• Gabriel (Lisp) 1985-1990
• Ptolemy Classic (C++) 1990-1997
• Ptolemy II (Java) 1996-

6

Ptolemy II Basics
• A model is a a set of interconnected

actors and one director
• Actor

– Input & output ports, states, & parameters
–Atomic or composite
–Communicates using tokens
–When it is fired it produces and consumes

tokens
producer
actor

consumer
actor

Ports

g

fu y

Component Interaction
Semantics
Are actors active? passive?
How is the flow of control determined?

Are communications timed? synchronized? buffered?
How is the communications mediated?

7

Interaction Semantics
3 Different Interpretations

g

f

g

f

g

f

g

f

g

f

g

f

g

f

g

f

• Continuous time: y(t)=f(g(u(t), u(t))

• Discrete time : {f, g} ⇒ y(k)=f(g(u(k-1)), u(k))

• Discrete time : {g, f} ⇒ y(k)=f(g(u(k), u(k))

Ptolemy II Basics
• Director

–Manages the data flow and the scheduling
of the actors

–The director fires the actors

• Receiver
–Defines the semantics of the port buffers

• Models of Computation
–Define the interaction semantics
– Implemented in Ptolemy II by a domain

• Director + Receiver

8

Hierarchical Heterogeneity
vs.

Amorphous Heterogeneity

Color is a domain, which defines
both the flow of control and
interaction protocols.

Hierarchical

Color is a communication
protocol only, which interacts in
unpredictable ways with the
flow of control.

Amorphous

Available Domains

• CSP – concurrent threads with rendezvous
• CT – continuous-time modeling
• DE – discrete-event systems
• DT – discrete time
• PN – process networks
• PN’ – Petri nets
• SDF – synchronous dataflow
• SR – synchronous/reactive
• GR – Graphics, 3D animations

Each is
realized as a
director and
a receiver
class in
Ptolemy II

9

Examples of Actors+Ports
Software Architectures

• Simulink (The MathWorks)
• Labview (National Instruments)
• Port-based objects (CMU/U of Maryland)
• SPW, signal processing worksystem (Cadence)
• System studio (Synopsys)
• ROOM, real-time object-oriented modeling

(Rational)
• Polis & Metropolis (UC Berkeley)
• VHDL, Verilog, SystemC (Various)
• …

An Example: Controlling the
Furuta Pendulum

• Classic control
problem

• Swing up the
pendulum and
then keep it in
the upright
position

10

The Example System

• Four states (all measurable)
– the pendulum angle ,
– and its velocity
– the arm angle ,
– and its velocity

• Input signal u is the torque on the arm

• Starts in the downright position
• Use three subcontrollers:

– to swing it up (energy based approach)
– to catch it (linear state feedback)
– to stabilize it (linear state feedback)

ϕ

θ

x

y

z

u

θ
θ
φ
φ

The Ptolemy II
Model

discrete controller

director

composite
actor

atomic
actor

model

continuous process

11

Pendulum dynamics in CT –
Continuous Time

()() ()
()

umlJpMrmrJ

mlJMrlMrl

mMglMrlMlJ

p

p

=+++++

++−

=+−+−+

ϕθ

θθϕθθθθθ

θθϕθθϕθ

)sin)((

cossin2sincos

0sin2coscossin

2222

22

22

Higher order
block

CT Domain
• The CT domain models components

– interacting by continuous signals
– described by ODE
– network of integrators

• Strengths
– Accurate model for many physical systems
– Established and mature simulation techniques

• Weaknesses
– Covers a narrow application domain
– Relatively expensive to simulate
– Difficult to implement in software

continuous signals

tokens

12

Controller Logic in FSM -
Finite State Machine

• States
• initial
• refinements

• Transitions
• Guards
• Assignments

• Natural way to
express modal
behavior

• Verification

Subcontrollers in SDF -
Synchronous Data flow

13

SDF Domain

Requires constant consumption and
productions rates
Balance equations:

FAN = FBM

Is statically schedulable
Decidable resource requirements
Adding appropriate restrictions,
increases freedom

send(0,t) get(0)

token t
N MA

B

The Complete Controller

Hierarchical and heterogeneous

14

3D Visualization in GR -
Graphics Domain

GR Domain

15

Execution
[demo]

Current Research
Issues

• The Caltrop actor language
–Find a more concise actor description

• Code generation
–Compile hierarchical model

• System level types
–Go beyond data type checking
–Extend into dynamic behavior

16

Summary
• Domain semantics defines

– flow of control across actors
– communication protocols between actors
– implemented with directors & receivers

• Actors define:
– functionality of components

• Hierarchy:
– Aggregation not just syntactical
– Composite actors are opaque, i.e. they look like

atomic actors
– Multiple domains may be used in the same model

Conclusion
• Embedded system components
• Realized in the Ptolemy II framework
• Modeling, simulation & code generation
• More information

– Edward Lee “What’s Ahead for Embedded
Computing?”, IEEE Computer, Sept. 2000

– http://ptolemy.eecs.berkeley.edu

• Thanks to: Edward Lee, Yuhong Xiong,
Jie Liu, Jörn Janneck, Steve Neuendorffer,
Xiaojun Liu

17

THE
END

