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Ptolemy II
A Software Laboratory

Ptolemy II
– Java based
– Graphical modeling and

simulation environment
– Multiple “models of

computation”
– Hierarchical &

heterogeneous models
– Code generator
– Actor language
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• Ptolemy II basics
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• Research Issues
• Summary

Embedded Systems
• Computers not thought of as

computers
• Increasingly complex designs

–networked, fail safe, etc

• Development speed
– time to market

• Bugs, bugs, bugs
–hard to correct a released product
–don’t want to reboot your toaster



3

What is So Different With
Embedded Software?

• Interaction with physical processes
–sensors, actuators, processes

• Critical properties are not all functional
–real-time, fault recovery, power, security,

robustness

• Heterogeneous
–hardware/software, mixed architectures

• Concurrent
–interaction with multiple processes

• Reactive
–operating at the speed of the environment

Component Technology

• Examples: Java beans, VB-components, etc
• Rationale

– Encapsulation
– Reuse
– Divide complexity

• Successful in many areas
• Problems with concurrent components

– Threads are not components
– Priorities are global parameters

• Difficult to design embedded systems
component with state-of-the art technology
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Multipurpose tools

• Express almost anything,
guarantee almost nothing

• You only need to know one
programming language
– Quick starts, but sometimes

slower endings

• Programmers+language,
a lifelong marriage

• Examples:
– Java
– C/C++ with RTOS, ADA, Modula-2
– RMA & EDF scheduling

Sharpen your tools

• Use problem
specific tools
–Constrain the

solutions
• Choice of tools,

a major design
decision

• Combine several
tools
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Hierarchical,
Heterogeneous Modeling

and Design

sensors
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Ptolemy Background

Claudius Ptolemy Edward A. Lee

• Initially a signal processing tool
• Gabriel (Lisp) 1985-1990
• Ptolemy Classic (C++) 1990-1997
• Ptolemy II (Java) 1996-
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Ptolemy II Basics
• A model is a a set of interconnected

actors and one director
• Actor

– Input & output ports, states, & parameters
–Atomic or composite
–Communicates using tokens
–When it is fired it produces and consumes

tokens
producer
actor

consumer
actor

Ports

g

fu y

Component Interaction
Semantics
Are actors active? passive?           
How is the flow of control determined?

Are communications timed? synchronized? buffered?
How is the communications mediated?
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Interaction Semantics
3 Different Interpretations
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• Continuous time: y(t)=f(g(u(t), u(t))

• Discrete time : {f, g} ⇒ y(k)=f(g(u(k-1)), u(k))

• Discrete time : {g, f} ⇒ y(k)=f(g(u(k), u(k))

Ptolemy II Basics
• Director

–Manages the data flow and the scheduling
of the actors

–The director fires the actors

• Receiver
–Defines the semantics of the port buffers

• Models of Computation
–Define the interaction semantics
– Implemented in Ptolemy II by a domain

• Director + Receiver
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Hierarchical Heterogeneity
vs.

Amorphous Heterogeneity

Color is a domain, which defines
both the flow of control and
interaction protocols.

Hierarchical

Color is a communication
protocol only, which interacts in
unpredictable ways with the
flow of control.

Amorphous

Available Domains

• CSP – concurrent threads with rendezvous
• CT – continuous-time modeling
• DE – discrete-event systems
• DT – discrete time
• PN – process networks
• PN’ – Petri nets
• SDF – synchronous dataflow
• SR – synchronous/reactive
• GR – Graphics, 3D animations

Each is
realized as a
director and
a receiver
class in
Ptolemy II
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Examples of Actors+Ports
Software Architectures

• Simulink (The MathWorks)
• Labview (National Instruments)
• Port-based objects (CMU/U of Maryland)
• SPW, signal processing worksystem (Cadence)
• System studio (Synopsys)
• ROOM, real-time object-oriented modeling

(Rational)
• Polis & Metropolis (UC Berkeley)
• VHDL, Verilog, SystemC (Various)
• …

An Example: Controlling the
Furuta Pendulum

• Classic control
problem

• Swing up the
pendulum and
then keep it in
the upright
position
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The Example System

• Four states (all measurable)
– the pendulum angle    ,
– and its velocity
– the arm angle    ,
– and its velocity

• Input signal u is the torque on the arm

• Starts in the downright position
• Use three  subcontrollers:

– to swing it up (energy based approach)
– to catch it (linear state feedback)
– to stabilize it (linear state feedback)

ϕ

θ

x

y

z

u

θ
θ
φ
φ

The Ptolemy II
Model

discrete controller

director

composite
actor

atomic
actor

model

continuous process
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Pendulum dynamics in CT –
Continuous Time
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CT Domain
• The CT domain models components

– interacting by continuous signals
– described by ODE
– network of integrators

• Strengths
– Accurate model for many physical systems
– Established and mature simulation techniques

• Weaknesses
– Covers a narrow application domain
– Relatively expensive to simulate
– Difficult to implement in software

continuous signals

tokens
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Controller Logic in FSM -
Finite State Machine

• States
• initial
• refinements

• Transitions
• Guards
• Assignments

• Natural way to
express modal
behavior

• Verification

Subcontrollers in SDF -
Synchronous Data flow
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SDF Domain

Requires constant consumption and
productions rates
Balance equations:

FAN = FBM

Is statically schedulable
Decidable resource requirements
Adding appropriate restrictions,
increases freedom

send(0,t) get(0)

token t
N MA

B

The Complete Controller

Hierarchical and heterogeneous
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3D Visualization in GR -
Graphics Domain

GR Domain
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Execution
[demo]

Current Research
Issues

• The Caltrop actor language
–Find a more concise actor description

• Code generation
–Compile hierarchical model

• System level types
–Go beyond data type checking
–Extend into dynamic behavior
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Summary
• Domain semantics defines

– flow of control across actors
– communication protocols between actors
– implemented with directors & receivers

• Actors define:
– functionality of components

• Hierarchy:
– Aggregation not just syntactical
– Composite actors are opaque, i.e. they look like

atomic actors
– Multiple domains may be used in the same model

Conclusion
• Embedded system components
• Realized in the Ptolemy II framework
• Modeling, simulation & code generation
• More information

– Edward Lee “What’s Ahead for Embedded
Computing?”, IEEE Computer, Sept. 2000

– http://ptolemy.eecs.berkeley.edu

• Thanks to: Edward Lee, Yuhong Xiong,
Jie Liu, Jörn Janneck, Steve Neuendorffer,
Xiaojun Liu
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THE
END


